Convert Once, Consume Many: SDF for Cacheable, Typed
Semantic Extraction from Web Pages

Version 0.2.0 — February 2026

Pranab Sarkar
Independent Researcher
developer@pranab.co.in

https://github.com/spranab

Project: https://sdfprotocol.org | https://github.com/sdfprotocol

DOI: https://doi.org/10.5281/zenodo.18559223

Abstract

Al agents and large language models (LLMs) typically consume web pages by fetching HTML and
repeatedly performing boilerplate removal, chunking, and semantic extraction (entities, claims, and
task-specific structure) at query time. This “re-extract per consumer” pattern increases latency and
inference cost, and yields inconsistent outputs across models and prompts. We present Struc-
tured Data Format (SDF), an open, schema-validated JSON protocol for publishing or serving
pre-extracted, agent-oriented semantic representations of web content. SDF specifies (i) a hi-
erarchical content type system with type-specific type_data and optional multi-type overlays (“as-
pects”), (ii) a conversion pipeline that separates type classification from type-conditioned extraction,
(iii) explicit provenance (converter/model identifiers, processing chain, and source-content hashing)
and optional temporal freshness signals, and (iv) content negotiation for multiple resolution levels.

We report the first production-scale deployment of SDF: a crawler processed 6,206 URLs and gen-
erated 2,335+ schema-valid SDF documents across 10 parent types and 74 observed type
combinations, with a ~96% pipeline success rate on successfully fetched content (most failures
were fetch-level: connection errors, rate limiting, dead links). A two-pass, locally hosted pipeline
— consisting of a QLoRA-fine-tuned 1.5B classifier (Qwen2.5-1.5B-Instruct) and a fine-tuned 3B
extractor (SmolLM3-3B) — achieves a 4.1x latency reduction relative to a 14B baseline while
retaining 90% exact extraction accuracy on a held-out benchmark and 100% JSON validity in
production. Telemetry across the production corpus revealed substantial taxonomy drift, with the
classifier inventing 63 type combinations not present in the protocol taxonomy; a deterministic
five-stage type normalization cascade corrects these violations and guarantees taxonomy com-
pliance before extraction. End-to-end conversion on consumer hardware (dual RTX 3090 Ti) av-
eraged ~18s/document with the fine-tuned pipeline, after which cached SDF responses can be
served in <10ms. SDF payloads averaged 1.8KB (compact) to 4.2KB (full) versus ~89KB raw
HTML (uncompressed).

https://github.com/spranab
https://sdfprotocol.org
https://github.com/sdfprotocol
https://doi.org/10.5281/zenodo.18559223

A downstream consumption experiment compared general-purpose 7B and 3B models answering
questions from raw markdown versus pre-extracted SDF across 30 documents and 5 question types.
The SDF path achieved 0.739 mean accuracy versus 0.352 raw at 7B (p < 0.05, t(29) = 11.890) and
0.606 versus 0.333 at 3B (p < 0.05, t(29) = 9.665), with a 58.5% latency reduction and 99.2%
token reduction relative to raw HTML (103,013 — 834 estimated tokens) — providing the first
empirical evidence that SDF’s “convert once, consume many” value proposition generalizes across
model scales.

SDF does not propose new extraction models; its contribution is a standardized, verifiable-by-
validation interchange layer that amortizes extraction and makes downstream agent consump-
tion cheaper, more uniform, and auditable.

Keywords: structured data extraction, web content representation, Al agents, semantic web, JSON
schema, content type classification, information extraction, large language models

1. Introduction

Al agents are turning the web into an on-demand knowledge substrate, but today’s agent pipelines
repeatedly pay the same "HTML tax”: every consumer refetches pages, strips boilerplate, chunks
text, and re-extracts entities and claims — often with inconsistent results and no auditable prove-
nance. This paper argues that the missing layer is not another extractor but a standardized seman-
tic intermediate representation: a cacheable, schema-validated, typed, and provenance-linked
snapshot of a page’s agent-relevant semantics.

1.1 The Problem: Redundant Semantic Inference

Modern Al agents interact with web content through a pipeline that has remained largely un-
changed since the early days of web scraping:

Fetch raw HTML from a URL

Strip tags and boilerplate to extract readable text
Tokenize the full text into the agent’s context window
Infer entities, topics, claims, and relationships

Rebuild context and structured understanding from scratch

e wn =

When thousands of agents process the same URL, each independently repeats this entire pipeline.
A popular news article might be fetched, parsed, and semantically analyzed millions of times by
different agents, each producing slightly different extractions depending on their model, prompt,
and context window.

This pattern mirrors long-studied web extraction pipelines in information retrieval and wrapper
induction [13, 14], where repeated boilerplate removal and content parsing is a dominant cost.
Recent agentic and RAG-based systems [9, 17] further amplify this cost by repeatedly chunking,
embedding, and re-extracting structure per consumer rather than amortizing it across consumers.

This redundancy has concrete costs:

« Compute: Each extraction consumes LLM inference tokens proportional to the full document
length

« Latency: Real-time agent workflows are bottlenecked by sequential fetch-parse-infer
pipelines

« Inconsistency: Different agents extract different entities, relationships, and claims from the
same content

« Bandwidth: Raw HTML is 3—10x larger than the agent-relevant semantic payload

* Freshness blindness: Agents have no signal about whether extracted facts are current, stale,
or time-sensitive

1.2 The Solution: Pre-Compiled Semantic Content

SDF addresses this by defining a canonical format for pre-compiled, semantic web content that
agents can consume directly. It is the missing layer between raw web content and agent reasoning
— analogous to an intermediate representation (IR) that makes downstream consumption cheaper
and more uniform: the “compilation” step is semantic extraction into a schema with explicit prove-
nance, rather than executable transformation.

1.3 Design Principles

Principle Description

Schema-deterministic For a fixed converter version, prompt/template
version, and model configuration, the converter
produces schema-valid outputs with stable field
structure. Provenance records the configuration
needed to reproduce results.

Schema-validated Every SDF document conforms to a modular JSON
Schema (draft 2020-12)

LLM-agnostic Not tied to any specific model, provider, or
inference runtime

Cacheable SHA-256 content hashes enable deduplication and
efficient caching

Human-inspectable Plain JSON format readable by both humans and
machines

Type-aware Hierarchical type system with type-specific
structured extraction

Auditable Provenance chains record converter, model, and
processing steps for reproducibility and trust
policies

Extensible Vendor-namespaced extensions without polluting
the core schema

Versioned Protocol header with feature flags, deprecation
tracking, and dialect negotiation

Gracefully degradable Partial extraction from smaller models still

produces valid SDF documents

Determinism note. Because SDF conversion may use probabilistic models, SDF targets determin-
ism at the interface level (field presence, types, constraints, and validation) and reproducibility via
explicit provenance (converter/prompt/model identifiers). Consumers should treat content hashes
as hashes of the source content, not guarantees of identical extracted fields across converters.

1.4 Contributions

This paper contributes:

1. A protocol and schema suite for representing web documents as agent-oriented semantic
JSON with hierarchical typing, type-specific type_data, and explicit provenance metadata.

2. A conversion architecture that separates type classification from type-conditioned extrac-
tion, with a deterministic type normalization cascade that corrects taxonomy drift from prob-
abilistic classifiers.

3. A fine-tuned dual-model pipeline demonstrating that QLoRA-fine-tuned 1.5B and 3B mod-
els can achieve 90% exact match accuracy at 4.1x lower latency than a 14B baseline, with a
combined model footprint under 3 GB.

4. A production-scale empirical study over 2,335 documents across 10 parent types, charac-
terizing type distribution, vocabulary drift, extraction quality, and operational performance
alongside a controlled benchmark comparing four model configurations.

5. A downstream consumption experiment demonstrating that general-purpose 7B and 3B
models both answer questions significantly more accurately (0.739 vs 0.352 at 7B; 0.606 vs
0.333 at 3B) and 58.5% faster when consuming pre-extracted SDF versus raw markdown, with
99.2% token reduction relative to raw HTML — providing the first empirical support that the
“convert once, consume many” value proposition generalizes across model scales.

We explicitly do not claim new information extraction algorithms; SDF is a systems protocol in-
tended to standardize and amortize extraction.

Paper roadmap. Section 2 situates SDF relative to web structured data, extraction, and provenance
standards. Section 3 formalizes the content structuring problem. Section 4 defines the SDF docu-
ment model and protocol semantics. Section 5 describes the two-pass conversion pipeline. Sec-
tion 6 details the modular schema system. Section 7 evaluates classification, extraction coverage,
runtime cost, and ablations. Section 8 covers batch processing. Section 9 discusses deployment
trade-offs and security considerations. Section 10 outlines future work.

2. Related Work

SDF sits at the intersection of (i) web structured data standards, (ii) web content extraction and
archiving, (iii) information extraction and knowledge representation, and (iv) modern agent/RAG
tooling that ingests web content. This section positions SDF relative to each and clarifies what SDF
standardizes (an interchange format + protocol semantics), versus what it intentionally does not (a
novel extraction model).

2.1 Structured Data Standards on the Web

Schema.org [1] defines a publisher-authored vocabulary commonly embedded via JSON-LD, Mi-
crodata, or RDFa. In practice, Schema.org coverage is inconsistent across sites and often incomplete
for agent needs (e.g., claims, section structure, or type-specific fields like APl endpoints). SDF is
complementary: it can incorporate Schema.org fields when available, but it targets a converter-
generated, schema-validated representation that is consistent even when publisher markup is ab-
sent or low quality.

Open Graph Protocol [2] and Twitter Cards provide lightweight metadata (title, description, im-
age) for social sharing. They are useful as inputs to SDF's source metadata but do not attempt
semantic extraction.

JSON-LD [3] is a linked-data serialization with RDF semantics. SDF prioritizes agent consumption
efficiency and validation (fixed JSON Schema constraints, resolution levels, and provenance fields)
rather than RDF graph interoperability. A future profile could define a normative JSON-LD context
for SDF.

2.2 Web Content Extraction and Boilerplate Removal

Boilerplate removal and main-content extraction are well-studied in web IR. Tools such as Mozilla
Readability [4], Boilerpipe [13], jusText, and trafilatura remove navigation, ads, and template noise
to recover article-like content. SDF uses such extractors as a preprocessing step but differs in scope:
it standardizes a post-extraction semantic packaging (entities, claims, relationships, type-specific
fields) plus provenance and negotiation semantics.

2.3 Web Archiving, WARC, and Large-Scale Web Corpora

WARC (Web ARChive format) [18] is the de facto standard for storing crawled web resources
(HTTP request/response payloads and metadata). WARC excels at preserving raw fetch artifacts
for replay and reproducibility, but it does not standardize semantic fields useful for agents (claims,
entities, type-specific structure). SDF is complementary: a natural deployment is to store WARC for
raw preservation and SDF as a derived, validated semantic layer with explicit provenance linking
back to the archived payload hash.

Common Crawl [19] provides web-scale snapshots for research and retrieval. Common Crawl-
style pipelines typically require repeated downstream parsing, boilerplate removal, and extraction
to build usable datasets. SDF can be viewed as an intermediate representation produced alongside
crawls, enabling more consistent downstream processing.

2.4 Commercial and Hosted Web-to-Structured APIs

Several commercial systems provide structured extraction from arbitrary web pages, most promi-
nently Diffbot, which converts pages into structured entities and knowledge graph entries. The
key difference is standardization and interoperability: SDF specifies an open schema and proto-
col semantics (typing, provenance, negotiation), and can serve as a target interchange format for
multiple extractors — commercial or open-source — rather than binding consumers to a single
vendor’s schema.

2.5 Reader Services and Agent-Focused Web Fetching

Recent agent ecosystems commonly rely on “reader” endpoints that transform HTML into cleaner
text/markdown for LLM ingestion, e.g., Jina Reader, FireCrawl, and similar services. These systems
primarily standardize content retrieval and cleaning (HTML to text/markdown, optional metadata).
SDF differs by standardizing a semantic output contract: typed type_data, extracted entities,
claims, relationships, temporal freshness signals, and provenance fields validated by JSON
Schema. Reader services reduce input noise; SDF reduces repeated semantic inference by publish-
ing a structured representation.

2.6 Agent/RAG Framework Ingestion Pipelines

Frameworks such as LangChain (document loaders) and Llamalndex provide connectors that fetch
web pages, convert them to text, splitinto chunks, and build vector indexes for retrieval-augmented
generation [9]. These pipelines operationalize ingestion, but intermediate representations are typ-
ically framework-internal and do not standardize cross-system interchange of extracted semantic
fields such as claims with temporal sensitivity. SDF can serve as a stable, cacheable document
representation that loaders ingest directly.

2.7 Information Extraction, OpenlE/KBP, and Claim Verification

SDF's entities, relationships, and claims fields overlap with classical information extraction
(IE), open information extraction (OpenlE) [14], and knowledge base population (KBP). Prior work
focuses on extraction models and evaluation protocols; SDF instead specifies how extraction arti-
facts are packaged, typed, validated, and attributed for downstream agent consumption. Sim-
ilarly, claim verification research (e.g., FEVER [15]) focuses on assessing truthfulness against evi-
dence; SDF's verification metadata is an interface hook for downstream verification systems
rather than a claim that SDF itself guarantees truth.

2.8 Provenance and Trust

Provenance standards such as W3C PROV [16] and related work on signed assertions (e.g., nanop-
ublications [20], verifiable credentials) formalize derivation and trust chains. SDF borrows these
motivations but adopts a pragmatic JSON envelope designed for low-friction deployment. Fu-
ture versions could define normative mappings from provenance.chain to PROV-O and specify
canonicalization and signature profiles for attestations.

We emphasize peer-reviewed sources where available; vendor documentation is cited only to de-
scribe specific APl mechanisms rather than as scientific evidence.

3. Formal Problem Definition

This section formalizes the content structuring problem that SDF targets. The goal is not to define
a single “correct” extraction, but to define a standardized, validated representation that is (i)
useful for agents, (ii) auditable, and (iii) cacheable and interoperable across producers/consumers.

3.1 Inputs and Outputs

Let a web resource be identified by a URL u. Fetching u at time t yields an HTTP response containing
a byte string h(u,t) (typically HTML) and headers H(u,t).

A preprocessing function pi maps the raw response to a normalized textual representation x(u,t)
(e.g., cleaned Markdown) plus extracted basic metadata (title, author, timestamps). In practice, pi
implements boilerplate removal and HTML-to-text normalization.

We define a content hash function hash(x(u,t)) used for caching and deduplication. This hash is
computed over the normalized content, not over the extracted semantic fields.

The converter produces an SDF document d(u,t) as: f theta(x(u,t)) = d(u,t), where f_theta is a param-
eterized conversion function (e.g., an LLM-based pipeline) with configuration theta that includes
converter version, prompt templates, model identifier, and decoding settings.

3.2 SDF as a Typed, Validated Semantic Envelope

An SDF document d is a JSON object constrained by a JSON Schema S_v for protocol version v.
SDF defines:

A type assignment tau(d) = (parent_type, type) where parent_type is drawn from a closed
set and type is validated conditionally on parent_type.

« A type-specific data object type_data(d) whose schema depends on tau(d).

« A semantic core consisting of summaries, entities, claims, relationships, topics, and sections.

« A provenance record prov(d) that includes at minimum the converter identifier, model iden-
tifier, and a content hash linking d to x(u,t).

SDF targets the following interface-level invariants:

1. Schema validity: Validate(d, S_v) = true

2. Type-aware constraints: Validate(type_data(d), S_tau(d)) = true, where S_tau(d) is the leaf
schema for the assigned type

3. Auditability: d contains sufficient provenance to identify theta and to link back to the source
content hash

3.3 Optimization Objective (Convert Once, Consume Many)

Let A be a set of agents that need to answer tasks g using web content. In a conventional pipeline,
each agent incurs a per-consumption cost:

C_raw(u,q) = C_fetch(u) + C_parse(u) + C_infer(u,q)

where C_infer includes LLM token costs for extraction/reasoning over raw text.
Under SDF, a producer pays a one-time (per content hash) conversion cost:
C_conv(u,t) = C_fetch(u) + C_parse(u) + C_extract(x(u,t))

and each consumer pays a reduced per-consumption cost:

C_sdf(u,q) = C_fetch_sdf(u) + C_consume(d(u,t), q)

where C_consume is typically smaller because the agent can route on types, read summaries/claims
directly, and avoid re-running extraction.

If a content hash is consumed k times, the amortized cost under SDF is C_conv + k C_sdf, compared
to k * C_raw. The protocol’s purpose is to make C_sdf* small and predictable by standardizing the
representation and validation constraints.

3.4 Scope and Non-Goals

SDF does not define a unique “correct” semantic parse of a document. Instead, it defines: - A
stable contract for what fields may exist and how they are typed - A validation mechanism for

structural correctness - A provenance interface so consumers can apply trust and reproducibility
policies

Truthfulness of claims with respect to the world is out of scope; SDF primarily targets faithfulness
to the source document and auditable conversion.

4. Protocol Architecture
4.1 Document Structure

An SDF document is a self-contained JSON object with the following top-level structure:

SDF Document v0.2.0

Protocol Header (sdf)
version, schema_uri, dialect, features

Identity
id (sdf:<sha256>), canonical url

Type Classification
parent_type, type, type_data, aspects[]

Source Metadata
url, title, author, site name, |
published_at, fetched_at

Semantic Core
summary, entities[], claims[],
relationships[], topics[], sections[]

Temporal Signals
published_at, retrieved_at, freshness

Provenance
converter, model used, content_hash,
chain[], attestations[]

Extensions
links[], embeddings[], profiles,
extensions (vendor-namespaced)

Conformance note. A producer is conformant if it emits JSON that validates against the SDF root
schema for the declared sdf_version. Optional capabilities (e.g., temporal, 1inks, embeddings,
profiles) are advertised via the sdf. features list; consumers MUST ignore unknown fields and
features. Version negotiation is handled at the HTTP layer via content negotiation and by schema

URIs embedded in the sdf header.

Normative vs. optional features. In v0.2.0, the normative core comprises the document envelope,
hierarchical typing, summary, source, and provenance fields, plus schema validation rules. Fea-
tures such as embeddings, profiles, and cryptographic attestations are optional extensions;
this paper describes their intended use but does not require implementations to support them for
conformance.

4.2 Hierarchical Type System

SDF v0.2 introduces a two-level hierarchical type system inspired by MIME types. Every document
has two type fields:

« parent_type: One of 10 broad content categories (enumerated, schema-enforced)
« type: A specific content subtype (string, validated per parent)

Together they form a type path like article.news or documentation.api_docs.

Taxonomy stability. The type taxonomy is versioned; this paper reports the v0.2.0 taxonomy used
by sdf-engine/0.2.0. All evaluation labels in Section 7 correspond to leaf types defined in this
taxonomy.

Type Taxonomy (v0.2.0)

article documentation commerce
— news * — api_docs * — product *
— blog — support * |— job_posting
— opinion — tutorial F— real_estate
— review * — guide F— service
— analysis — changelog L— auction
— press_release — faq
data reference discussion
'— finance * — encyclopedia |— forum_thread
— sports — academic_paper — g_and_a *
'— weather — legal document |— social post
L— scientific_dataset |— recipe L— comment_thread
— medical info
— patent
code media profile
— repository * — video — person
— package — podcast — organization *
— code_snippet — image_gallery L— place
L pull request — music_album
event
— conference *

'— meetup
— webinar

— live_event
L— concert

Types marked with * are the 10 MVP types with full type-specific extraction prompts and JSON
Schema validation.

Design Rationale The two-field approach was chosen for several reasons:

1. No string parsing required: Consumers can route on parent_type without splitting

2. Graceful fallback: Unknown leaf types can still be processed using known parent type se-
mantics

Schema enforcement: parent_type is a closed enum; type is validated per-parent

MIME precedent: Mirrors the type/subtype pattern familiar to web developers

Indexing: Both fields can be independently indexed for efficient filtering

iAW

Type-Specific Data (type_data) Each content type defines a type_data object with fields spe-
cific to that content category. The schema uses flat merged inheritance — parent base fields and
leaf-specific fields coexist in one flat object.

For example, documentation.api_docs extracts: - Parent fields (documentation): prod-
uct_or_system, audience, prerequisites, difficulty, code_examples - Leaf fields
(api_docs): api_name, endpoints[], base_urls, auth_methods, rate_limits, pagination,
error_model

Multi-Type Content: Aspects Real-world content often spans multiple types. A Bloomberg earn-
ings article is primarily article.news but also contains financial data. SDF handles this through
aspects — typed overlays that attach secondary type classifications with their own type_data:

{
"parent_type": "article",
"type": "news",
"type data": { "headline": "Apple Reports Record Q4 Earnings" },
"aspects": [

{
"aspect_type": { "parent_type": "data", "type": "finance" },
"type _data": { "instrument": { "kind": "stock", "symbol": "AAPL" } },
"confidence": 0.85

}

]
}

Aspect semantics. Aspects are additive overlays that MUST NOT mutate or override core fields
(summary, entities, claims, etc.). Each aspect carries its own aspect_type and type_data
validated against the referenced leaf schema. If multiple aspects of the same aspect_type are
present, consumers should treat them as alternative hypotheses and may select by confidence.

4.3 Semantic Core

Every SDF document, regardless of type, contains a semantic core:

10

Summary: Three-tier summarization — brief (one sentence, max 300 chars), detailed (2-3
sentences, max 1000 chars), and key_points (3-7 bullet points).

Entities: Named entities with type classification (person, organization, technology, location,
product, event, concept), relevance scoring (0-1), and external identifiers (Wikidata IDs, ORCID,
DOI, URLs).

Claims: Factual assertions extracted from the content with confidence scoring, type classification
(fact, opinion, prediction, instruction, definition), and optional verification and temporal
metadata.

Verification metadata is advisory. In v0.2, verification fields indicate the extractor's sug-
gested priority and possible follow-up queries; they are not guaranteed to correspond to external
ground truth. Verification accuracy is not evaluated in this paper; we treat verification as a hook
for downstream systems.

Relationships: Subject-predicate—object triples linking entities.
Topics: 3-10 normalized topic tags for categorization and filtering.

Sections: Document structure breakdown with headings and content summaries.

4.4 Temporal Signals

SDF provides structured freshness metadata that enables agents to make informed cache and trust
decisions:

{
"temporal”: {
"published_at": "2025-04-06T18:00:00Z",
"retrieved_at": "2026-02-08T03:47:327Z",
"freshness": {
"staleness_days": 308,
"volatility": "fast",
"recommended_recheck_after_days": 7,
"reason_codes": ["frequently changes"]
}
}
}

In v0.2, freshness.volatility is computed using a type-default prior (e.g., data.finance
defaults to realtime) optionally adjusted by page signals (presence of timestamps, “last updated”
markers). Producers MUST include reason_codes indicating whether volatility was assigned by (i)
type prior, (ii) explicit “last updated” metadata, or (iii) content heuristics.

Volatility =~ Content Types Meaning

static Legal documents, specifications Rarely changes

slow Documentation, profiles Changes monthly/quarterly
moderate Discussions, tutorials Changes weekly

fast News articles, blog posts Changes daily

realtime Financial data, weather Changes continuously

11

4.5 Provenance and Trust

Every SDF document carries provenance metadata:

« converter: Engine identifier and version (e.g., "sdf-engine/0.2.0")
« model_used: The LLM model that performed extraction

» conversion_confidence: Overall confidence score (0-1)

+ content_hash: SHA-256 hash of the source content for deduplication
« chain[]: Ordered processing steps with actor, action, and timestamps
« attestations[]: Cryptographic signature slots for trust chains

Verifiability scope. SDF distinguishes (i) provenance verifiability (who produced this SDF, with
what software/model, from which source content hash) from (ii) claim veracity (whether extracted
claims are true in the world). The protocol supports cryptographic attestations over a canonicalized
subset of fields to enable tamper-evidence, but does not by itself guarantee claim truth.

4.6 Content Negotiation

SDF supports three resolution levels to optimize bandwidth and token usage:

Level Includes Use Case

compact Summary, entities, claims, topics, Quick triage, search indexing
metadata

standard + type_data, relationships, Normal agent consumption
sections, temporal

full + embeddings, links, profiles, Knowledge graph construction
extensions

HTTP binding. Producers SHOULD serve SDF with media type application/sdf+json. Reso-
lution can be requested via either Accept parameters (e.g., Accept: application/sdf+json;
resolution=compact) or a query parameter (e.g., ?resolution=compact). When a non-full re-
sponse is served, the omitted manifest MUST list omitted top-level fields and provide a URL to
retrieve the complete representation.

4.7 Extension Mechanism

Vendors can attach custom data using namespaced extensions:

{

"extensions": {
"acme_corp": { "internal id": "doc-12345", "workflow_ stage": "reviewed" }

}
}

Extension keys MUST be vendor-namespaced, MUST NOT duplicate core fields, and consumers
MUST ignore unknown extensions.

12

4.8 Discovery

Websites MAY advertise SDF support via a discovery document at /.well-known/sdf.json:

{

"sdf_version": "0.2.0",

"endpoint": "https://example.com/sdf",

"default resolution": "standard",

"supported_types": ["article.news", "documentation.api_docs"],
"features": ["temporal.vl", "links.v1"],

"contact": "mailto:sdf-admin@example.com"

}

Consumers MUST treat discovery as advisory and apply standard web security controls (TLS, origin
checks).

5. Two-Pass Analysis Pipeline
5.1 Architecture Overview

SDF’s analysis pipeline separates content understanding into two distinct LLM calls, with a determin-
istic normalization step between them. Production deployment introduced an intermediate type
normalization cascade between classification and extraction to address taxonomy drift observed
at scale (Section 7.5).

Input URL + HTML |
I

v

|
Pass 1: Classify |

Qwen2.5-1.5B (FT) |
|
|
| (parent_type, type, confidence)
v

Type Normalization Cascade
(deterministic post-process)

valid? confidence >= 0.4?

| |
| |
| |
v v

yes no
[| [1
| Pass 2: Extract | | 14B Fallback Classify |
| SmolLM3-3B (FT) | | Qwen2.5-14B (base) |

13

I
v

Pass 2: Extract
SmolLM3-3B (FT)

5.2 Pass 1: Classification

The first pass uses a lightweight prompt to determine the content’'s type. The system prompt
provides the full type taxonomy and instructs the model to pick the most specific matching leaf
type, identify secondary types as aspects, and return structured JSON with parent_type, type,
confidence, and optional aspects[].

Token budget: ~500 tokens. Temperature: 0.1.

This lightweight first pass enables routing to the correct type-specific prompt, early filtering for
unrecognizable content, and aspect detection before extraction.

5.3 Type Normalization Cascade

Production telemetry revealed frequent taxonomy drift (Section 7.5), including invented parent
types (e.g., recipe) and invalid leaf types (e.g., reference.unknown). To prevent invalid types
from propagating into extraction prompts and downstream storage, SDF implements a determin-
istic type normalization cascade between classification and extraction:

1. Enum constraints on the classification schema: the classifier output schema restricts par-
ent_type and type to the protocol’s valid taxonomy enumerations.

2. Parent type alias mapping: common alternative parent labels are mapped to canonical
parents (e.g., recipe -> reference, news -> article).

3. Explicit remap table: a maintained remap table handles frequent misclassifications and
swapped labels (20+ common patterns in production).

4. Auto-fix for misplaced valid leaves: if a leaf type is valid but emitted under the wrong
parent, it is moved to the correct parent (e.g., article.tutorial -> documenta-
tion.tutorial).

5. 14B fallback re-classification: if types remain invalid after normalization, or if classifier con-
fidence is < 0.4, the document is re-classified using the base 14B model.

The normalization cascade is a protocol-level reliability mechanism: it converts probabilistic model
outputs into taxonomy-compliant SDF types prior to extraction. An SDF producer SHOULD enforce
taxonomy validity using schema enums and deterministic normalization prior to emitting final SDF.

5.4 Pass 2: Type-Specific Extraction

The second pass loads a type-specific prompt template based on the (normalized) Pass 1 classifi-
cation and performs comprehensive extraction. Each of the 10 MVP types has a dedicated prompt
that instructs the model to extract core fields (entities, claims, relationships, summary) and type-
specific type_data.

14

The extraction schema is composed at runtime by merging the base extraction schema with the
type-specific schema. This means adding a new content type requires only writing a new prompt
template and schema fragment.

5.5 Production Models and Serving Configuration

Production uses a fine-tuned, two-model local pipeline served via Ollama’s OpenAl-compatible
APl on dual NVIDIA RTX 3090 Ti GPUs:

« Classifier: Qwen2.5-1.5B-Instruct, QLoRA fine-tuned
- LoRA rank: 32; alpha: 64; epochs: 3; max sequence length: 2,048
— Quantization: GGUF Q4_K_M; size: 986 MIB

« Extractor: HuggingFaceTB/SmolLM3-3B, QLoRA fine-tuned
- LoRA rank: 32; alpha: 64; epochs: 2; max sequence length: 2,048
— Quantization: GGUF Q4_K_M; size: 1,827 MB

This configuration replaces the earlier single-model approach and was selected after a controlled
benchmark (Section 7.4) showed SmolLM3-3B achieving 90% exact match vs 80% for Qwen2.5-3B,
at 3.3x faster inference speed.

5.6 Fine-Tuned Training Methodology

The fine-tuned models were trained using a teacher-student bootstrapping workflow:

1. Teacher generation: A base Qwen2.5-14B model crawled URLs and generated SDF outputs,
which served as initial training targets.

2. Dataset export: Training data was exported in ChatML format as (system, user, assistant)
message triples — 576 training samples and 72 validation samples for each task.

3. Fine-tuning: QLORA supervised fine-tuning was performed using Unsloth/trl SFTTrainer
with 4-bit quantization during training.

4. Quantization and packaging: Fine-tuned LoRA adapters were merged with base weights,
converted to GGUF Q4_K_M, and imported into Ollama.

5. Serving: Both models were served locally via Ollama’s OpenAl-compatible APl on a single
node with dual GPUs.

This methodology prioritized reproducibility and operational simplicity while achieving substantial
latency reductions relative to 14B-only inference (Section 7.4).

5.7 Model Compatibility

The analyzer supports both strict structured output (OpenAl's json_schema response format) and
relaxed JSON mode for compatible providers:

Provider Response Format Schema Enforcement

OpenAl API json_schema (strict) Full schema validation at generation
time

Ollama (local) json_object Prompt-guided with post-hoc validation

Other json_object Prompt-guided with post-hoc validation

OpenAl-compatible

15

For non-strict providers, the analyzer uses a compact extraction format — a hand-crafted JSON
template with descriptive placeholders that guides smaller models to produce valid output.

5.8 Content Preprocessing

Before analysis, raw HTML undergoes a preprocessing pipeline:

Fetch: HTTP GET with 15s timeout, 5MB content limit, SDFBot /0. 2 user agent

Extract: JSDOM + Mozilla Readability for main content extraction

Convert: Turndown converts clean HTML to Markdown for LLM consumption

Budget: Content is budgeted to a target token limit. Headings, lists, and tables are prefer-
entially retained; boilerplate and repeated navigation are dropped. When truncation occurs,
the converter records provenance metadata so consumers can detect potential omissions.
5. Metadata: Title, author, site name, and published date are extracted from HTML meta tags
and Open Graph properties

AN =

6. Schema System
6.1 Modular Composition

SDF uses a modular JSON Schema system (draft 2020-12) organized by type hierarchy:

spec/schemas/
— sdf-document-0.2.schema.json # Root document envelope
— common/ # 9 shared value objects

— person-ref, org-ref, place-ref, media-ref,
— price, rating, license, identifier, link

— article/
— base.schema.json # Shared article fields
— news.schema.json # allof: [base, news-specific]
— review.schema.json

— documentation/

— base.schema.json

— api_docs.schema.json

— support.schema.json

— ... (8 more parent type directories)

28 schema files total for the v0.2 MVP.

6.2 Inheritance via allof

Leaf type schemas compose parent base fields and leaf-specific fields using JSON Schema'’s al10f.
This eliminates field duplication, allows independent evolution of parent and leaf schemas, and
enables validators to enforce parent-level constraints via if/then on parent_type, even when
leaf-specific constraints are unavailable.

16

6.3 Shared Value Objects

Nine common schemas define reusable value objects: SdfPersonRef, SdfOrgRef, SdfPlaceRef,
SdfMediaRef, SdfPrice, SdfRating, SdfLicense, SdfIdentifier, SdfLink. These are refer-
enced across type schemas via $ref, ensuring consistent field naming and validation rules.

7. Evaluation

This section reports evaluation results for SDF generation across (i) a preliminary pilot study (un-
changed from v0.2.0), (ii) production-scale batch processing of 2,335 web documents, (iii) con-
trolled benchmark results comparing four model configurations, and (iv) analysis of type vocabulary
stability and normalization behavior observed in production.

7.1 Evaluation Objectives and Metrics

The evaluation focuses on four objectives:

1. Type correctness: whether the predicted parent_type and type match expected cate-
gories.

2. Schema validity: whether the system produces valid JSON conforming to the SDF schema.

3. Extraction completeness: whether type_data is present and populated.

4. Operational performance: end-to-end latency and stage-wise timings.

The following metrics are reported where available:

« Exact Match (%): exact agreement on both parent_type and type with reference output.
« Parent Match (%): agreement on parent_type even if the leaf type differs.

Valid JSON (%): syntactic JSON validity.

» Has type_data (%): whether type_data is emitted and non-empty.

+ Avg Entities: mean number of extracted entities per document.

« Classification / Extraction / Total time (ms): average stage latencies in benchmark runs.

Where production-scale accuracy labels are not available, the paper reports telemetry distributions
and explicitly distinguishes them from controlled benchmark measurements (Section 7.7).

7.2 Pilot Study (Preliminary; v0.2.0)

The initial pilot study evaluated SDF generation on 10 documents spanning 5 primary types,
comparing three model sizes (Qwen2.5 7B / 14B / 32B Instruct, all Q4_K_M quantized, served via
Ollama).

Classification accuracy (pilot):

Model Size Parent-type accuracy Leaf-type accuracy Reasonable-type rate
7B 10/10 (100%) 7/10 (70%) 9/10 (90%)

14B 10/10 (100%) 8/10 (80%) 10/10 (100%)

32B 10/10 (100%) 9/10 (90%) 10/10 (100%)

17

Extraction coverage (pilot):

Dimension 7B 14B 32B
Summary (brief populated) 8/10 10/10 10/10
Summary (key_points populated) 6/10 10/10 10/10
Entities (>0 extracted) 6/10 10/10 10/10
Claims (>0 extracted) 5/10 9/10 10/10
Topics (>0 extracted) 6/10 10/10 10/10
Sections (>0 extracted) 3/10 7/10 9/10

Smaller models often produce schema-valid but sparse documents, while mid-sized models pro-
vide substantially better coverage. The marginal improvement from 14B to 32B is modest for most
fields. These results are retained as preliminary evidence and are superseded for operational claims
by the production-scale evaluation below.

7.3 Production-Scale Evaluation (2,335 Documents)

7.3.1 Scale and Corpus Composition A production crawler enqueued 6,206 URLs from sitemap
discovery. Of the 5,805 URLs attempted, 2,245 were successfully converted on the first pass,
yielding a 38.7% raw completion rate. Automatic retries (up to 3 per failed URL) recovered an
additional 90 documents, bringing the final corpus to 2,335 SDF documents. The vast majority of
first-pass failures were fetch-level issues unrelated to the SDF pipeline:

Table 7.0 — Failure breakdown (N = 3,560 failed URLs)

Failure Category Count % of Failures
Connection error (unreachable) 2,754 77.4%
HTTP 429 rate-limited 401 11.3%
HTTP 404/410 not found 158 4.4%
Network/DNS error 64 1.8%
Content too large (>5 MB) 60 1.7%
JSON parse error (model output) 56 1.6%
Context length exceeded ~40 1.1%
Timeout 13 0.4%
Other (stack overflow, server error) 14 0.4%

Of the URLs that were successfully fetched and parsed, the SDF pipeline (classification + extrac-
tion) succeeded on ~96% of inputs. The ~4% pipeline-level failures were primarily JSON parse
errors from malformed model output and context length overflows from very long documents.
This indicates that the conversion pipeline itself is reliable; the low raw completion rate reflects
web-scale fetch realities (dead links, rate limiting, bot protection) rather than pipeline failures.

The processed corpus included diverse sources: Cloudflare Blog, GitHub Docs, Wikipedia, Stack
Overflow, recipe sites, legal documents, and a range of technical and general-interest content.

18

7.3.2 Parent Type Distribution Table 7.1 — Parent type distribution (production; N = 2,335)

Parent type Count Percent
article 830 35.5%
documentation 715 30.6%
reference 412 17.6%
discussion 250 10.7%
event 25 1.1%
profile 25 1.1%
code 22 0.9%
media 17 0.7%
commerce 16 0.7%
data 15 0.6%
recipe (invalid) 8 0.3%

The appearance of recipe as a parent type is invalid under the taxonomy and reflects classifier
vocabulary drift (Section 7.5).

7.3.3 Top Leaf Types Table 7.2 — Top leaf types (production; N = 2,335)

Type (parent.leaf) Count Percent Validity
article.news 739 31.6% valid
documentation.api_docs 292 12.5% valid
documentation.tutorial 271 11.6% valid
discussion.qg_and_a 206 8.8% valid
reference.academic_paper 157 6.7% valid
reference.unknown 96 4.1% invalid leaf
reference.recipe 94 4.0% valid
documentation.reference 75 3.2% invalid leaf
documentation.support 39 1.7% valid
article.tutorial 29 1.2% misparented

The presence of invalid and misparented types at non-trivial rates (e.g., reference.unknown at
4.1%) motivated the normalization cascade described in Section 5.3.

7.3.4 Quality Score Distribution Table 7.3 — Quality score distribution (production; N =
2,335)

Quality score Count Percent

08 1403 60.1%
0.7 744 31.9%
0.5 182 7.8%
Other 6 0.3%

19

The quality score is an implementation-specific extraction confidence metric (0-1 range). It is re-
ported here as production telemetry rather than an externally calibrated accuracy measure.

7.4 Fine-Tuned Pipeline Evaluation (Controlled Benchmark)

7.4.1 Benchmark Setup A controlled comparative benchmark was conducted on 10 documents
to quantify the impact of the fine-tuned dual-model pipeline relative to alternative configurations.
Four configurations were tested:

Config Classifier Extractor Total Footprint

Fine-tuned Qwen?2.5-1.5B (FT, SmolLM3-3B (FT, 2.8 GB

1.5B + 3B 986 MB) 1,827 MB)

SmolLM3

Fine-tuned Qwen?2.5-1.5B (FT, Qwen2.5-3B (FT, 1.9 29 GB

1.5B + 3B 986 MB) GB)

Qwen

Hybrid 1.5B + Qwen2.5-1.5B (FT, Qwen2.5-14B (base, 10 GB

14B 986 MB) 9 GB)

Base 14B only Qwen2.5-14B (base, Qwen2.5-14B (base, 9GB
9 GB) 9 GB)

7.4.2 Results Table 7.4 — Comparative benchmark results (N = 10 documents)

Exact Parent Valid Has Avg Classify Extract Total
Config Match Match JSON type_data Entities (ms) (ms) (ms)

FT 90% 100% 100% 90% 57 1,150 17,186 18,336
1.5B

+ 3B

SmolLM3

FT 80% 100% 100% 90% 3.8 1,150 56,361 57,511
1.5B

+ 3B

Qwen

Hybrid 80% 100% 100% 100% 8.2 1,150 ~70,000 ~71,150
1.5B

+ 14B

Base 80% 100% 100% 100% 7.1 ~5,000 ~70,000 ~75,000
14B

only

7.4.3 Observations

1. Latency reduction. The fine-tuned 1.5B + SmolLM3-3B configuration averaged 18,336 ms
total versus ~75,000 ms for base 14B-only, corresponding to an approximate 4.1x reduction
in end-to-end latency.

20

2. Extractor selection. Replacing the Qwen2.5-3B extractor with SmolLM3-3B improved exact
match from 80% to 90% and reduced extraction time from 56,361 ms to 17,186 ms (approxi-
mately 3.3x faster). SmolLM3-3B’s native JSON output optimization appears to improve both
accuracy and throughput for structured extraction tasks.

3. Schema validity. All configurations produced 100% valid JSON, indicating that schema-
constrained prompting effectively prevents syntactic JSON failures.

4. Completeness tradeoff. Configurations using a 14B extractor reported 100% type_data
presence, whereas fine-tuned 3B extractors reported 90%, reflecting a measurable complete-
ness tradeoff alongside the latency gains.

5. Entity yield. The 14B-based configurations extracted more entities on average (7.1-8.2) than
the 3B configurations (3.8-5.7), suggesting that larger models produce more comprehensive
entity lists.

7.5 Type Vocabulary Analysis

7.5.1 Observed Vocabulary Drift Production telemetry revealed substantial divergence between
model-emitted type strings and the protocol taxonomy:

74 distinct type combinations were observed in production outputs.
» Only ~40 of these combinations were valid under the taxonomy.
 The 1.5B classifier dynamically invented 63 types not present in the taxonomy.

This drift manifested in several failure modes:

+ Invented parent types: e.g., recipe as a parent type (8 documents; 0.3% of parents).

+ Invalid leaf types: e.g., reference.unknown (96 documents; 4.1% of all documents).

« Swapped semantics: e.g., news.article (swapped parent/type ordering).

+ Duplicate semantics across namespaces: e.g., reference.recipe vs article.recipevs
recipe.recipe for the same content category.

» Misparented valid leaves: e.g, article.tutorial where tutorial belongs under doc-
umentation (29 documents; 1.2%).

These issues are not merely cosmetic: type strings determine which extraction schema and prompts
are applied, and therefore directly affect extraction quality, comparability, and downstream index-

ing.

7.5.2 Normalization Cascade Impact The type normalization cascade (Section 5.3) addresses
vocabulary drift through five deterministic stages. In production, the most frequent corrections
involved:

« Remapping recipe.* variants to reference.recipe (parent alias + remap table)
 Correcting reference.unknown to reference.academic_paper (explicit remap)

« Moving article.tutorial to documentation.tutorial (auto-fix misplaced leaf)
« Fixing documentation.reference to documentation.guide (explicit remap)

The cascade ensures that all documents reaching the extraction pass carry valid, taxonomy-
compliant type labels, enabling consistent prompt selection and schema validation.

7.6 Performance and Payload Size

Table 7.5 — Processing time comparison

21

Pipeline Classify Extract Total

Fine-tuned 1.5B + 3B SmolLM3 1.2s 172s ~18s
Base 14B only ~5s ~70s ~75s

Once converted, cached SDF can be served in <10ms, amortizing conversion cost across consumers.

Table 7.6 — Payload size (pilot measurement)

Format Average Size Relative
Raw HTML (uncompressed) 89 KB 1.0x
SDF (full) 4.2 KB 0.047x
SDF (compact) 1.8 KB 0.020x

7.7 Ablation: Two-Pass vs. One-Pass

We compared the two-pass pipeline (classify then type-conditioned extraction) against a one-pass
baseline that prompts the model to infer type and extract all fields in a single call using the union
schema. Two-pass conversion reduces prompt length and schema complexity in Pass 2, improving
schema validity and extraction completeness for smaller models, at the cost of an additional short
classification call.

7.8 Threats to Validity

This evaluation combines (i) a preliminary pilot study, (ii) production telemetry at scale, (iii) a con-
trolled 10-document benchmark, and (iv) a 30-document downstream consumption experiment.
Each introduces distinct limitations:

1. Pilot study limitations (Section 7.2). The pilot evaluated only 10 documents across 5 pri-
mary types, limiting statistical confidence and coverage of real-world variation.

2. Benchmark limitations (Section 7.4). The comparative benchmark also uses 10 documents,
which is sufficient to detect large latency differences (e.g., 3.3x-4.1x) but insufficient to esti-
mate accuracy metrics with narrow confidence intervals. Reported exact match results should
be interpreted as indicative rather than definitive.

3. Production telemetry is not ground-truth labeled (Section 7.3). The production dataset
of 2,335 documents does not include human-verified labels for type correctness or field-level
extraction accuracy. Production results primarily support claims about scale, distributional
behavior, and observed failure modes, not definitive accuracy.

4. Teacher-student bootstrapping bias. Fine-tuned models were trained on outputs gener-
ated by a base 14B model. Systematic teacher errors may be learned and amplified, and ap-
parent agreement with teacher-generated references may be inflated. Independent human
evaluation is required to quantify absolute accuracy.

5. Selection bias from fetch failures. Only 2,335 of 6,206 enqueued URLs (including retries)
were successfully processed. While 93% of first-pass failures were fetch-level (connection er-
rors, rate limiting, dead links) rather than pipeline failures, the successfully fetched subset may

22

not be representative of the full URL set — sites with aggressive bot protection or frequent
downtime are systematically excluded.

6. Model/provider dependence. Outputs vary by model family, quantization, and decoding
settings. Low temperature reduces but does not eliminate variance.

7. Ground truth ambiguity. Leaf-type labels can be subjective when taxonomy boundaries are
fuzzy (e.g., blog vs. news, guide vs. tutorial).

8. Downstream evaluation circularity (Section 7.9). The downstream consumption experi-
ment uses the 14B-generated SDF document as both the SDF input and the ground truth.
This means the SDF path has an inherent advantage: it is being scored against its own data.
While this favors the SDF path, the raw path receives the same underlying content and should
be able to extract the same information — the measured gap reflects the 7B model’s ability to
locate and structure information, not a tautological advantage. Independent human-labeled
ground truth would strengthen these findings.

7.9 Downstream Consumption Evaluation

The preceding sections evaluate the SDF production pipeline — classification accuracy, extraction
quality, and processing performance. This section evaluates the consumption side: does a down-
stream agent benefit from receiving pre-extracted SDF data compared to raw markdown?

Experimental setup. We sampled 30 documents from the production corpus (3 per parent type
across 10 types) and generated 5 template-based questions per document: (Q1) content type
identification, (Q2) entity extraction, (Q3) key fact retrieval, (Q4) type-specific field extraction, and
(Q5) entity relationship identification. Each question was posed to a general-purpose Qwen2.5-
7B-Instruct model (Q4_K_M quantized, served via Ollama) through two paths:

« Raw path: The model receives the full extracted markdown content of the page and the
question.

« SDF path: The model receives a compact SDF representation (summary, entities, claims, top-
ics, relationships, type_data, metadata — omitting provenance and sections) and the same
question.

To quantify full-pipeline token savings, we also re-fetched the raw HTML for each sampled URL,
measuring the actual payload an agent would receive from a web server before any extraction.

Responses were scored against ground truth derived from the SDF document itself (generated by
the 14B base model). Scoring used type-appropriate metrics: exact match for classification, F1 set
overlap for entities, token-overlap coverage for key facts, field matching for type-specific data, and
triple matching for relationships.

Table 7.9a: Overall Downstream Comparison (N=30 documents, 150 question-answer pairs
per path)

Metric Raw Path SDF Path Delta
Mean Accuracy 0.352 0.739 +0.387
Median Accuracy 0.333 1.000 +0.667
JSON Valid Rate 99.3% 100% +0.7%
Mean Input Tokens (est.) 1,731 834 -51.8%

23

Metric Raw Path SDF Path Delta
Mean Latency (ms) 3,872 1,609 -58.5%

A paired t-test on per-document average accuracy yielded t(29) = 11.890, p < 0.05, indicating a
highly significant advantage for the SDF path.

Table 7.9b: Accuracy by Question Category

Category Raw SDF Delta SDF Wins Ties Raw Wins
Type identification 0.200 0.733 +0.533 18 12 0
Entity extraction 0298 0.842 +0.544 29 0 1
Key facts 0451 0.808 +0.357 26 3 1
Type-specific fields 0483 0.772 +0.289 12 14 4
Relationships 0.327 0.538 +0.211 19 11 0

Entity extraction shows the largest improvement: the 7B consumer model achieves 0.842 accuracy
with pre-extracted SDF entities versus 0.298 when parsing raw markdown, reflecting a near-3x
improvement. SDF won 29 of 30 documents for entity extraction. Type identification also showed
a striking gain (+0.533), with the SDF path winning 18 of 30 documents and tying on the remaining
12. The median SDF accuracy of 1.000 indicates that over half of all documents achieved perfect
scores on the SDF path.

Table 7.9c: Accuracy by Content Type

Parent Type N Raw SDF Delta

article 5 0453 0862 +0.409
documentation 3 0535 0884 +0.350
reference 3 0233 0745 +0.512
discussion 3 0289 0703 +0414
commerce 3 0180 0.776 +0.596
data 3 0.157 0.539 +0.381
code 3 0385 0.546 +0.161
media 1 0390 0.567 +0.177
profile 3 0311 0574 +0.264
event 3 0310 0.772 +0.463

The SDF path outperformed raw for every parent type. The largest gains appeared for commerce
(+0.596), reference (+0.512), discussion (+0.414), and article (+0.409), indicating that SDF is most
valuable precisely where raw content is hardest to parse or where type-specific structure provides
the greatest leverage.

Table 7.9d: Token Efficiency (HTML—Markdown—SDF pipeline)

To contextualize token reduction, we compare three representations of the same content: the raw
HTML fetched from the web server, the extracted markdown (after Readability-based boilerplate
removal), and the compact SDF payload.

24

Parent Type HTML Tokens (est.) Markdown Tokens SDF Tokens HTML—-SDF

article 119,747 1,756 939 -99.2%
documentation 105,497 2,114 734 -99.3%
reference 123,315 2,831 883 -99.3%
discussion 73,578 627 915 -98.8%
commerce 163,504 1,610 812 -99.5%
data 139,804 1,089 762 -99.5%
code 32,425 2,145 693 -97.9%
media 97,710 351 723 -99.3%
profile 117,672 2,918 881 -99.3%
event 44,000 1,228 712 -98.4%
Overall 103,013 1,731 834 -99.2%

Raw HTML averages 103,013 estimated tokens — dominated by navigation, scripts, stylesheets,
and framework markup — versus 834 tokens for compact SDF: a 99.2% reduction. Even com-
pared to cleaned markdown (which already strips boilerplate), SDF achieves a 51.8% reduction on
average. The token savings translate directly to inference cost: at current API pricing tiers, serving
SDF instead of raw HTML reduces per-query input cost by approximately two orders of magnitude.

For short-content types (discussion, media), SDF can be larger than the cleaned markdown be-
cause the entity, claim, and relationship overhead exceeds the raw text length. However, accuracy
still improved for these types (+0.414 discussion, +0.177 media), confirming that SDF's value is
in pre-organized structure — the consumer model can read structured fields directly rather than
re-deriving them from unstructured text.

Latency. The SDF path was 58.5% faster on average (1,609ms vs 3,872ms). This reflects both
reduced prompt-processing time from fewer input tokens and reduced generation effort when the
model has structured input to draw from.

Limitations of this evaluation. Ground truth is derived from the 14B teacher model, not human
labels, inheriting the teacher-student bias noted in Section 7.8. The 7B consumer model may differ
from other model families. Questions are template-based and may not capture the full range of
downstream agent tasks. The sample of 30 documents, while diverse, remains modest. HTML sizes
were measured at experiment time and may differ from sizes at original crawl time.

7.9.5 Model Scale Comparison To assess whether SDF's downstream advantage is model-
dependent or generalizes across model scales, we repeated the full 30-document consumption
experiment with a second consumer model at roughly half the parameter count: Qwen2.5-3B-
Instruct (Q4_K_M quantized, served via Ollama). The experimental setup, question templates,
scoring methodology, and ground truth were identical to the 7B evaluation above; only the
consumer model changed.

Table 7.9e: Model Scale Comparison — Overall Metrics

Metric 7B Raw 7B SDF 7B Delta 3B Raw 3B SDF 3B Delta
Mean 0.352 0.739 +0.387 0.333 0.606 +0.273
Accuracy

25

Metric 7B Raw 7B SDF 7B Delta 3B Raw 3B SDF 3B Delta

Median 0.333 1.000 +0.667 0.250 0.667 +0.417
Accuracy
Mean 1,731 834 -51.8% 1,360 757 -44.3%
Input
Tokens
(est.)
Mean 3,872 1,609 -58.5% 3,606 1,622 -55.0%
Latency
(ms)
Paired t(29) = t(29) =
t-test 11.890, p < 9.665, p <
0.05 0.05

Table 7.9f: Category Accuracy by Model Scale

Category 7B Raw 7B SDF 7B Delta 3B Raw 3B SDF 3B Delta
Type 0.200 0.733 +0.533 0.183 0.400 +0.217
identification

Entity 0.298 0.842 +0.544 0.281 0.662 +0.380
extraction

Key facts 0.451 0.808 +0.357 0.342 0.853 +0.511
Type-specific 0.483 0.772 +0.289 0.594 0.711 +0.117
fields

Relationships 0.327 0.538 +0.211 0.262 0.403 +0.141

Scale analysis. The SDF advantage persists at the 3B scale and remains statistically significant (t(29)
= 9.665, p < 0.05), confirming that SDF's benefit is not an artifact of a particular model capacity.
However, the absolute delta is smaller at 3B (+0.273 vs +0.387 at 7B): the smaller model extracts
less from both paths, but SDF still provides a proportionally larger boost than raw markdown does.

One notable exception is key facts, the one category where the 3B model with SDF actually outper-
forms the 7B model with SDF (0.853 vs 0.808). This suggests that pre-extracted key_points in the
SDF summary are most valuable precisely when the consumer model has less capacity to locate and
synthesize key information from unstructured text — the structured field effectively compensates
for reduced model reasoning.

Conversely, type identification degrades most sharply at the 3B scale (SDF accuracy drops from
0.733 at 7B to 0.400 at 3B), indicating that smaller models struggle more with classification tasks
even when presented with structured input that includes explicit parent_type and type fields.

Both models exhibit the same overall pattern: entity extraction and key facts benefit most from
SDF, while relationships show the smallest improvement. This consistency across scales suggests
that SDF's advantage is structural — pre-organized semantic fields reduce the extraction burden
regardless of consumer model capacity — rather than being a property of any specific model size.

26

8. Batch Processing
8.1 Production Batch Crawl Summary

A production batch crawl enqueued 6,206 URLs, of which 5,805 were attempted and 2,335 suc-
cessfully converted to SDF documents (2,245 on the first pass plus 90 from automatic retries). The
first-pass completion rate (38.7%) is dominated by fetch-level failures: 77% of failures were connec-
tion errors (unreachable hosts), 11% were rate limiting (HTTP 429), and 4% were dead links (HTTP
404/410). The SDF pipeline itself — classification, normalization, and extraction — succeeded on
approximately 96% of successfully fetched content, with the remaining ~4% failing due to model
JSON output errors or context length overflows (Section 7.3.1).

The production run achieved an average processing time of approximately 14 seconds per doc-
ument (end-to-end, including fetch). This operational average should not be conflated with the
controlled benchmark timings in Section 7.4.

8.2 Sitemap Integration
SDF includes a sitemap-based batch processing system for converting entire websites:

1. Parse sitemap: Fetch and parse XML sitemaps (including sitemap indexes with recursive sub-
sitemap resolution)

2. Enqueue URLs: Deduplicate and insert URLs into a SQLite-backed job queue with priority
ordering

3. Process: Background worker dequeues jobs and processes them sequentially through the
conversion pipeline

4. Retry: Failed jobs are re-queued up to 3 times with error tracking

8.3 Error Handling and Retry Strategy
Production batch crawling requires explicit handling of transient and structural failures:

1. Fetch retries with backoff. Transient network failures are retried with exponential backoff
and bounded retry counts to prevent queue starvation.

2. ldempotent processing. Each URL is processed idempotently: re-processing a URL over-
writes or versions prior outputs without producing duplicate records.

3. Stage-specific failure isolation. Fetch failures are recorded separately from model inference
failures. Schema validation failures are recorded with the offending payload for debugging.

4. Fallback classification path. If classification produces an invalid type after normalization or
confidence is < 0.4, the pipeline re-classifies using the base 14B model (Section 5.3).

8.4 Quality Monitoring

The batch pipeline emits a per-document quality score, enabling monitoring of output distributions
over time and across sources. Over the 2,335 production documents, 60.1% scored 0.8 (high qual-
ity), 31.9% scored 0.7 (good quality), and 7.8% scored 0.5 (lower quality). This distribution provides
a coarse operational view and monitoring signal for regressions and domain shifts.

27

8.5 Operational Characteristics

The production batch system runs on:

« Hardware: Dual NVIDIA RTX 3090 Ti (24 GB VRAM each)

« Model footprint: Classifier (986 MB) + Extractor (1,827 MB) = 2.8 GB total

Serving: Ollama with OpenAl-compatible API, models loaded on separate GPUs

Storage: SQLite-backed document store with full SDF JSON, content text, and type metadata
Throughput: ~14s/doc average (including fetch), limited by extraction inference time

9. Discussion
9.1 What SDF Is (and Is Not)

SDF standardizes an interchange format and protocol semantics for agent-oriented semantic
representations of web content. It aims to reduce repeated per-consumer extraction by enabling
“convert once (per content hash), consume many.”

SDF is not: a new information extraction algorithm, a guarantee of factual correctness, a replace-
ment for web archiving (WARC) or publisher-authored structured data (Schema.org), or a complete
defense against adversarial web content.

9.2 Why Not Just Schema.org / JSON-LD?

Schema.org is valuable when present and correct, but it is (i) publisher-dependent, (ii) often in-
complete for agent tasks, and (iii) rarely encodes document-level claims, section structure, or type-
specific details in a consistent way. A robust SDF converter should ingest Schema.org/JSON-LD as
high-precision signals, then fill gaps using extraction. The likely "best practice” is hybrid: prefer
publisher markup where available; fall back to extraction otherwise; record provenance indicating
which fields came from which source.

9.3 Why Not RAG Chunks + Embeddings?

RAG pipelines are effective for open-ended QA but typically require repeated chunking, embedding,
and retrieval logic per application. They do not standardize higher-level semantic fields (claims
with temporal sensitivity, typed type_data, provenance chains). SDF is complementary: it can
coexist with embeddings and can improve retrieval by providing structured summaries, entities,
and section boundaries.

9.4 What Is the Research Value?

A fair critique is that SDF’s novelty is primarily systems and standardization, not new modeling.
The research value lies in defining a validated, auditable contract for semantic extraction artifacts
that can be produced by heterogeneous extractors and consumed consistently by agents. This is
analogous to why formats like WARC, RSS/Atom, or OpenAPI matter: they enable interoperability,
caching, and tooling ecosystems even when underlying algorithms vary.

28

9.5 Determinism and Trust

LLM-based conversion is not strictly deterministic. SDF targets determinism at the interface level
(schema validity, stable field structure) and uses provenance to support reproducibility policies.
Trust is similarly scoped: provenance supports auditing and policy decisions, but does not guaran-
tee that extracted claims are true.

9.6 Security Considerations

Because SDF conversion uses LLMs, pages may contain instructions intended to manipulate the con-
verter (prompt injection) or to cause the extractor to emit malicious fields. SDF mitigations include:
- Strict schema validation with rejection/repair on malformed outputs - Explicit prompt instructions
to ignore in-page directives - HTML sanitization and removal of hidden/boilerplate content - Op-
tional secondary verification passes for high-risk fields - Provenance metadata enabling consumers
to apply trust policies (e.g., accept only signed outputs from vetted converters)

Nevertheless, SDF does not fully solve adversarial robustness; consumers should treat SDF as un-
trusted unless provenance policies are satisfied.

9.7 When SDF Provides Clear Value

SDF is most valuable when: - Content is reused across many agents or tasks (high cache hit rate) -
Type-specific structure matters (API docs, products, finance pages, Q&A) - Latency budgets are
tight and extraction cannot be repeated at query time - Auditing matters (which model produced
which fields from which content hash)

SDF is less valuable when content is accessed only once (no amortization), pages change extremely
frequently, or tasks require full-fidelity reading beyond what summaries/claims capture.

9.8 Limitations and Open Problems

« Benchmarking: v0.2 evaluation is a pilot; a large, stratified benchmark is needed

« Taxonomy ambiguity: Leaf-type boundaries can be fuzzy; governance and stability remain
open

 Provenance standardization: Mapping to W3C PROV and defining signature canonicaliza-
tion are future work

« Update semantics: Differential updates and change detection are important future work

« Privacy: Converting and storing derived representations may have policy implications (copy-
right, personal data)

10. Future Work
10.1 Near-Term (v0.3)

« Human-labeled evaluation: Stratified sample of 200+ production documents with human-
annotated type labels and field-level extraction accuracy, addressing the teacher-student bias
in current training data

29

« Fetch resilience: Reducing the 77% connection-error failure rate through retry strategies,
proxy rotation, and adaptive rate limiting

« Normalization metrics: Per-stage correction rates for the type normalization cascade, in-
cluding residual invalid rate and confidence calibration curves

» Hybrid extraction: Combine rule-based extraction (Schema.org, Open Graph, structured
HTML) with LLM extraction

+ Baseline comparisons: Schema.org extraction, heuristic-only, one-pass LLM, commercial ex-
tractors (Diffbot, Jina Reader)

10.2 Medium-Term

« Binary format: MessagePack or CBOR encoding for high-throughput pipelines

« Content maps: Chunk-level addressing with JSON pointers

« Agent hint system: Recommended read order, context budgets, tool suggestions
+ Federated SDF indexes: Decentralized discovery and search

« Schema registry: Community-managed registry for custom type registration

» Normative PROV-O mapping: Formal provenance interoperability

10.3 Long-Term

+ SDF as a web standard: IETF/W3C standardization alongside existing content protocols
+ Media type registration: Formal application/sdf+json registration per RFC 6838 [21]
 Publisher-generated SDF: CMS plugins that generate SDF at publish time

11. Ethical Considerations and Broader Impact

SDF standardizes the representation of extracted semantics from web content and can lower the
cost of large-scale ingestion and reuse. This has several ethical implications. Copyright and terms-
of-service: while SDF stores derived structured fields rather than full page renders, it may still con-
stitute a derivative representation of protected content. Deployments should respect robots.txt,
site terms, and jurisdictional requirements, and should support takedown and retention policies.
Privacy: web pages may contain personal data; extracting entities and claims can increase the risk
of re-identification. Producers should provide redaction and minimization options. Misinforma-
tion and trust: SDF does not guarantee truth; extracted claims may be incorrect or misleading.
Provenance fields support auditing and trust policies, but consumers must treat SDF as untrusted
unless produced by vetted converters with verification. Bias: entity typing and summarization can
reflect model biases; evaluations should include diverse sources and languages.

12. Reproducibility Statement

Artifacts. We release: (i) the SDF protocol specification (v0.2.0), (ii) the complete JSON Schema
suite (28 files, draft 2020-12), (iii) the reference converter implementation (sdf-engine/0.2.0),
(iv) fine-tuning scripts and training data export pipeline, (v) benchmark scripts, and (vi) the type
normalization cascade implementation.

30

Models. Fine-tuned model weights are provided as GGUF Q4_K_M files with Ollama Modelfiles for
reproducible import. Base models: Qwen2.5-1.5B-Instruct (classifier), HuggingFaceTB/SmolLM3-
3B (extractor). QLoRA hyperparameters: rank 32, alpha 64, dropout 0.05.

Data. For each evaluated URL, we provide the fetch timestamp and normalized Markdown input.
The production dataset of 2,335 SDF documents is stored in a SQLite database with full JSON
payloads, content text, and type metadata. We recommend archiving raw HTTP responses in WARC
and publishing content hashes for exact replay.

Environment. Production evaluation: dual NVIDIA RTX 3090 Ti, Ollama v0.6+, Windows 11, Node js
22. Models served via OpenAl-compatible API at port 11434. Decoding temperature: 0.1.

Procedure. To replicate: (1) fetch or replay archived pages, (2) run preprocessing, (3) run two-pass
conversion with specified configurations, (4) validate outputs against schemas, (5) run benchmark
scripts to compute metrics. Fine-tuning can be reproduced from the exported training JSONL files
using the provided training script.

13. Conclusion

The production study confirms that SDF is viable beyond small pilots: more than two thousand het-
erogeneous web pages were converted into schema-valid, taxonomy-compliant JSON with com-
modity GPUs and open-weight models. Fine-tuned sub-4B models deliver near-14B accuracy at
one quarter of the latency and one sixth of the memory footprint, making local, privacy-preserving
deployment practical.

The two-pass analysis architecture — with the newly introduced type normalization cascade — bal-
ances efficiency with type-specific extraction depth while transforming noisy classifier outputs into
deterministic taxonomy labels. In production, the 1.5B classifier invented 63 distinct type combi-
nations not in the taxonomy; the cascade resolved all detected violations, enabling reliable down-
stream indexing. The modular JSON Schema system scales across 50+ content types without du-
plication, and the protocol’s graceful degradation across model sizes ensures accessibility across
deployment contexts.

While teacher-generated training labels limit absolute accuracy guarantees, the findings substanti-
ate SDF's core promise: a standardized, cacheable semantic representation that amortizes extrac-
tion cost across consumers. A downstream consumption experiment provides the first direct evi-
dence: general-purpose 7B and 3B models both answered questions significantly more accurately
from SDF than from raw markdown — the 7B model achieved 0.739 vs 0.352 mean accuracy (t(29)
= 11.890, p < 0.05) and the 3B model achieved 0.606 vs 0.333 (t(29) = 9.665, p < 0.05) — with 58.5%
lower latency and 99.2% fewer tokens relative to raw HTML. The benefit was consistent across all
10 parent types and both model scales, with entity extraction showing the largest gain (0.842 vs
0.298 at 7B, SDF won 29/30 documents). A fine-tuned 1.5B + 3B pipeline processing documents in
~18 seconds — at a combined model footprint of 2.8 GB — demonstrates that production-quality
SDF generation is accessible on consumer hardware.

SDF is not a replacement for existing web standards; it is a complementary layer purpose-built for
the emerging era of Al agent web consumption. As the number of Al agents continues to grow,
the cost of redundant content re-analysis will grow proportionally. SDF provides the infrastructure
to address this at the protocol level.

31

The protocol specification, reference implementation, JSON Schemas, and client SDK are available
as open source at sdfprotocol.org.

Acknowledgments

This work was conducted independently. All models were trained and evaluated on consumer
hardware (dual NVIDIA RTX 3090 Ti). The author thanks the open-source communities behind
Qwen2.5, SmolLM3, Ollama, and Hugging Face Transformers for making local LLM experimentation
accessible.

References

[1] Schema.org. “Schema.org — Schemas for structured data on the internet.” Accessed 2026.
https://schema.org/

[2] Facebook. “The Open Graph Protocol.” Accessed 2026. https://ogp.me/

[31 W3C. "JSON-LD 1.1 — A JSON-based Serialization for Linked Data.” W3C Recommendation,
2020. https://www.w3.org/TR/json-1d11/

[4] Moxzilla. “Readability.js — A standalone version of the readability library used for Firefox Reader
View.” Accessed 2026. https://github.com/mozilla/readability

[5] Honnibal, M., Montani, |, Van Landeghem, S., and Boyd, A. “spaCy: Industrial-strength Natural
Language Processing in Python.” Zenodo, 2020. https://spacy.io/

[6] Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., and McClosky, D. "The Stanford
CoreNLP Natural Language Processing Toolkit.” In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics: System Demonstrations, pp. 55-60, 2014.

[7] OpenAl. “Function Calling and Structured Outputs.” OpenAl API Documentation, 2024.
https://platform.openai.com/docs/guides/function-calling

[8] Vrandecic, D. and Krotzsch, M. “Wikidata: A Free Collaborative Knowledge Base.” Communica-
tions of the ACM, 57(10):78-85, 2014.

[9] Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Kuttler, H., Lewis, M., Yih, W.,
Rocktaschel, T., Riedel, S., and Kiela, D. “Retrieval-Augmented Generation for Knowledge-Intensive
NLP Tasks.” In Advances in Neural Information Processing Systems (NeurlPS), 2020.

[10] Anthropic. “Model Context Protocol.” 2024. https://modelcontextprotocol.io/
[11] OpenAPl Initiative. “OpenAPI Specification v3.1.0.” Accessed 2026. https://spec.openapis.org/oas/v3.1.0
[12] Sitemaps.org. "Sitemaps XML Format.” Accessed 2026. https://www.sitemaps.org/protocol.html

[13] Kohlschutter, C., Fankhauser, P., and Nejdl, W. “Boilerplate Detection using Shallow Text Fea-
tures.” In Proceedings of the 3rd ACM International Conference on Web Search and Data Mining
(WSDM), pp. 441-450, 2010.

32

[14] Etzioni, O., Banko, M., Soderland, S., and Weld, D. S. “Open Information Extraction from the
Web." Communications of the ACM, 51(12):68-74, 2008.

[15] Thorne, J., Vlachos, A., Christodoulopoulos, C., and Mittal, A. "FEVER: a Large-scale Dataset
for Fact Extraction and VERIification.” In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL), pp. 809-819, 2018.

[16] W3C. "PROV-O: The PROV Ontology.” W3C Recommendation, 2013. https://www.w3.0org/TR/prov-

o/

[17] Gao, Y., Xiong, Y., Dibia, V., Zhang, L., and Nyberg, E. “Retrieval-Augmented Generation for
Large Language Models: A Survey.” arXiv preprint arXiv:2312.10997, 2024.

[18] ISO 28500:2017. “Information and documentation — WARC file format.” International Organi-
zation for Standardization, 2017.

[19] Common Crawl Foundation. “Common Crawl.” Accessed 2026. https://commoncrawl.org/

[20] Kuhn, T., Willighagen, E., Groth, P., Seneviratne, O., Dumontier, M., and Mons, B. “Nanopubli-
cations: A Growing Resource of Provenance-Centric Scientific Linked Data.” /EEE Access, 6:77966—
77974, 2018.

[21] Freed, N. and Klensin, J. “RFC 6838: Media Type Specifications and Registration Procedures.”
I[ETF, 2013. https://www.rfc-editor.org/rfc/rfc6838

[22] Fielding, R., Nottingham, M., and Reschke, J. “RFC 9110: HTTP Semantics.” IETF, 2022.
https://www.rfc-editor.org/rfc/rfc9110

Appendix A: Example SDF Document

{
"sdf_version": "0.2.0",
"id": "sdf:43332a7148fb00833ad9b6d03738b036be06832532f8dd65b13888f5e35fcbce”,
"canonical_url": "https://blog.cloudflare.com/welcome-to-developer-week-2025/",
"sdf": {
"version": "0.2",
"schema_uri": "https://sdfprotocol.org/schemas/sdf-document-0.2.schema.json",
"dialect": "core",
“features": ["temporal.vl", "links.v1"]
¥
"parent_type": "article",
"type": "news",
"type data": {},
"language": "en",

"source": {
"url”: "https://blog.cloudflare.com/welcome-to-developer-week-2025/",
"title": "Welcome to Developer Week 2025",
"author": "Rita Kozlov",
"site name": "The Cloudflare Blog",
"published_at": "2025-04-06T18:00+01:00",

33

"fetched_at": "2026-02-08T03:47:32.934Z"

s
"summary": {
"brief": "Cloudflare is launching Developer Week 2025 to showcase new tools and prod
"detailed": "The Cloudflare blog announces Developer Week 2025, highlighting advancel
"key points": [
"Cloudflare is launching Developer Week 2025",
"AI advancements are transforming software development”,
"Cloudflare provides a comprehensive platform for developers”
]
s
"entities": [
{ "name": "Developer Week 2025", "type": "event", "relevance": 1.0 },
{ "name": "Cloudflare", "type": "organization", "relevance": 1.0 },
{ "name": "Cloudflare Workers", "type": "technology", "relevance": 1.0 },
{ "name": "Rita Kozlov", "type": "person", "relevance": 0.8 }
1
"claims": [
{
"statement”: "Cloudflare is launching Developer Week 2025 featuring new tools for
"confidence": 0.9,
"type": "fact",
"verification": { "status": "unverified", "priority": "medium" },
"temporal”: { "time_sensitivity": "high" }
}
1
"topics": ["developer week", "cloudflare", "ai development", "full-stack"],
"metadata": {
"word_count": 797,
"reading level": "intermediate",
"content_quality": 0.8,
"freshness": "current"
s
"temporal”: {
"published at": "2025-04-06T18:00+01:00",
"retrieved_at": "2026-02-08T03:47:32.9347Z",
"freshness": {
"staleness_days": 308,
"volatility": "fast",
"recommended_recheck_after_days": 7,
"reason_codes": ["frequently changes"]
¥
s
"provenance": {

"converter": "sdf-engine/0.2.0",

"model _used": "qwen2.5:14b-instruct-g4_K M",

"conversion_confidence": 0.9,

"content_hash": "sha256:43332a7148fb00833ad9b6d03738b036be0683253218dd65b13888F5e35F

34

"chain": [

{
"step_id": "s1",
"actor": { "type": "service", "name": "fetcher", "version": "0.2.0" },
"action": "fetch"
¥
{
"step_id": "s2",
"actor": { "type": "service", "name": "analyzer", "version": "0.2.0" },
"action": "extract"
}
]
}
}
Appendix B: Full Type Taxonomy (v0.2.0)
Parent Leaf Types MVP
article news, blog, opinion, review, analysis, news, review

documentation
commerce
data

reference

discussion
code
media

profile
event

press_release

api_docs, support, tutorial, guide,
changelog, faq

product, job_posting, real_estate, service,
auction

finance, sports, weather, scientific_dataset,

report

encyclopedia, academic_paper,
legal_document, recipe, medical_info,
patent

forum_thread, q_and_a, social_post,
comment_thread

repository, package, code_snippet,
pull_request

video, podcast, image_gallery,
music_album

person, organization, place
conference, meetup, webinar, live_event,
concert

api_docs, support
product

finance

g_and_a

repository

organization
conference

Appendix C: Figure Descriptions

Figure 1: SDF in the agent/web stack. Shows the baseline path (Agent -> HTML fetch -> boiler-
plate removal -> chunking -> extraction -> reasoning) vs. SDF path (Converter once per content

35

hash -> SDF cache/CDN -> many agents consume SDF directly). Annotates where costs shift and
where provenance/temporal signals live.

Figure 2: SDF document model. Block diagram of the JSON envelope: header, identity, type
fields, semantic core, type_data, temporal, provenance, extensions. Shows hierarchical type dis-
patch: parent_type -> leaf schema -> type_data validation. Shows aspect overlays as sidecar typed
objects.

Figure 3: Two-pass conversion pipeline with normalization cascade. Updated pipeline: fetch
-> normalize -> Pass1 classify (1.5B) -> type normalization cascade -> (optional 14B fallback) ->
Pass2 extract (3B) -> validate -> emit. Shows the five normalization stages and branching logic for
fallback.

Figure 4: Parent-type distribution histogram. Horizontal bar chart showing counts for each
parent_type across 2,335 production documents (article=830, documentation=715, reference=412,
discussion=250, ...). Highlights the long-tail distribution and the anomalous “recipe” parent type.

Figure 5: Latency-accuracy tradeoff by model configuration. Clustered bars or scatter plot
comparing four configurations: (i) fine-tuned 1.5B+3B SmolLM3, (ii) fine-tuned 1.5B+3B Qwen, (iii)
hybrid 1.5B+14B, (iv) 14B only. X-axis: total latency (ms, log scale), Y-axis: exact-match accuracy
(%). Visually conveys the 4.1x speed gain with minimal accuracy loss.

Figure 6: Type normalization cascade flow. Sankey diagram with left nodes showing raw clas-
sifier outputs (74 unique types), middle nodes showing corrections at each cascade stage (enum
enforcement, alias mapping, remap table, auto-fix, 14B fallback), and right node showing 100%
valid types after normalization. Widths represent document counts.

SDF Protocol is an open standard. The specification, reference implementation, and schemas are
available at sdfprotocol.org.

36

	Abstract
	1. Introduction
	1.1 The Problem: Redundant Semantic Inference
	1.2 The Solution: Pre-Compiled Semantic Content
	1.3 Design Principles
	1.4 Contributions

	2. Related Work
	2.1 Structured Data Standards on the Web
	2.2 Web Content Extraction and Boilerplate Removal
	2.3 Web Archiving, WARC, and Large-Scale Web Corpora
	2.4 Commercial and Hosted Web-to-Structured APIs
	2.5 Reader Services and Agent-Focused Web Fetching
	2.6 Agent/RAG Framework Ingestion Pipelines
	2.7 Information Extraction, OpenIE/KBP, and Claim Verification
	2.8 Provenance and Trust

	3. Formal Problem Definition
	3.1 Inputs and Outputs
	3.2 SDF as a Typed, Validated Semantic Envelope
	3.3 Optimization Objective (Convert Once, Consume Many)
	3.4 Scope and Non-Goals

	4. Protocol Architecture
	4.1 Document Structure
	4.2 Hierarchical Type System
	4.3 Semantic Core
	4.4 Temporal Signals
	4.5 Provenance and Trust
	4.6 Content Negotiation
	4.7 Extension Mechanism
	4.8 Discovery

	5. Two-Pass Analysis Pipeline
	5.1 Architecture Overview
	5.2 Pass 1: Classification
	5.3 Type Normalization Cascade
	5.4 Pass 2: Type-Specific Extraction
	5.5 Production Models and Serving Configuration
	5.6 Fine-Tuned Training Methodology
	5.7 Model Compatibility
	5.8 Content Preprocessing

	6. Schema System
	6.1 Modular Composition
	6.2 Inheritance via allOf
	6.3 Shared Value Objects

	7. Evaluation
	7.1 Evaluation Objectives and Metrics
	7.2 Pilot Study (Preliminary; v0.2.0)
	7.3 Production-Scale Evaluation (2,335 Documents)
	7.4 Fine-Tuned Pipeline Evaluation (Controlled Benchmark)
	7.5 Type Vocabulary Analysis
	7.6 Performance and Payload Size
	7.7 Ablation: Two-Pass vs. One-Pass
	7.8 Threats to Validity
	7.9 Downstream Consumption Evaluation

	8. Batch Processing
	8.1 Production Batch Crawl Summary
	8.2 Sitemap Integration
	8.3 Error Handling and Retry Strategy
	8.4 Quality Monitoring
	8.5 Operational Characteristics

	9. Discussion
	9.1 What SDF Is (and Is Not)
	9.2 Why Not Just Schema.org / JSON-LD?
	9.3 Why Not RAG Chunks + Embeddings?
	9.4 What Is the Research Value?
	9.5 Determinism and Trust
	9.6 Security Considerations
	9.7 When SDF Provides Clear Value
	9.8 Limitations and Open Problems

	10. Future Work
	10.1 Near-Term (v0.3)
	10.2 Medium-Term
	10.3 Long-Term

	11. Ethical Considerations and Broader Impact
	12. Reproducibility Statement
	13. Conclusion
	Acknowledgments
	References
	Appendix A: Example SDF Document
	Appendix B: Full Type Taxonomy (v0.2.0)
	Appendix C: Figure Descriptions

